REASONING AND SENSE MAKING WITH TECHNOLOGY
SOME EXAMPLES FROM ALGEBRA AND FUNCTIONS

Al Cuoco

(special thanks to Kevin Waterman)

Center for Mathematics Education, EDC

T^3, 2012
OUTLINE

1. Introduction

2. Function Equality
 - Agreeing to Disagree
 - Equal Functions

3. Up a Notch
 - Resolving Recurrences
 - One for the Road
There are three uses of “this kind” of technology that can help students build ideas:

1. Reduce computational overhead
2. Construct and perform experiments
3. Build computational models of mathematical objects
Find a function that agrees with this table.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
What would you do if . . .

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Sasha says, “I know, I know, it’s

\[f(n) = n^5 - 10n^4 + 35n^3 - 50n^2 + 26n + 1, \]"
Variation 1

Find some polynomial functions that agree with this table.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
Suppose you have two functions, \(f \) and \(g \) that agree on \(\{0, 1, 2, 3, 4\} \).

If \(f \) and \(g \) are polynomial functions, then \(g - f \) is a polynomial function with zeros at \(\{0, 1, 2, 3, 4\} \).

By the factor theorem, \(g - f \) has as factors \(x, x - 1, x - 2, x - 3, x - 4 \).

Hence
\[
(g - f)(x) = \text{something} \cdot x(x - 1)(x - 2)(x - 3)(x - 4)
\]

and
\[
g(x) = f(x) + k \cdot x(x - 1)(x - 2)(x - 3)(x - 4)
\]
VARIATION 2

Find a function that agrees with this table.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
Now we have two models:

\[
f(n) = 2n + 1 \quad \quad g(n) = \begin{cases}
1 & n = 0 \\
g(n - 1) + 2 & n > 0
\end{cases}
\]

\[f \equiv g\]
TWO MODELS

\[f(n) = 2n + 1 \quad g(n) = \begin{cases}
1 & n = 0 \\
g(n - 1) + 2 & n > 0
\end{cases} \]

Suppose on your handheld, \(f(n) = g(n) \) for \(0 \leq n \leq 64 \), but \(f(65) \) reports 131 and \(g(65) \) reports an error.

\[
g(65) = g(64) + 2 \quad \text{(this is how } g \text{ is defined)} \\
= f(64) + 2 \quad \text{(CSS)} \\
= (2 \cdot 64 + 1) + 2 \quad \text{(this is how } f \text{ is defined)} \\
= (2 \cdot 64 + 2) + 1 \quad \text{(arithmetic)} \\
= (2 \cdot 65) + 1 \quad \text{(more arithmetic)} \\
= f(65) \quad \text{(this is how } f \text{ is defined)}
\]

TWO MODELS

\[
\begin{align*}
 f(n) &= 2n + 1 \\
 g(n) &= \begin{cases}
 1 & n = 0 \\
 g(n-1) + 2 & n > 0
\end{cases}
\end{align*}
\]

Suppose on your handheld, \(f(n) = g(n) \) for \(0 \leq n \leq 254 \), but \(f(255) \) reports 510 and \(g(255) \) reports an error.

\[
\begin{align*}
 g(255) &= g(254) + 2 \quad \text{(this is how } g \text{ is defined)} \\
 &= f(254) + 2 \quad \text{(CSS)} \\
 &= (2 \cdot 254 + 1) + 2 \quad \text{(this is how } f \text{ is defined)} \\
 &= (2 \cdot 254 + 2) + 1 \quad \text{(arithmetic)} \\
 &= (2 \cdot 255) + 1 \quad \text{(more arithmetic)} \\
 &= f(255) \quad \text{(this is how } f \text{ is defined)}
\end{align*}
\]
TWO MODELS

\[f(n) = 2n + 1 \]
\[g(n) = \begin{cases}
1 & n = 0 \\
g(n-1) + 2 & n > 0
\end{cases} \]

Suppose on your (virtual) handheld, \(f(n) = g(n) \) for \(0 \leq n \leq k - 1 \), but \(f(k) \) reports \(2k + 1 \) and \(g(k) \) reports an error.

\[
g(k) = g(k - 1) + 2 \quad \text{(this is how } g \text{ is defined)}
\]
\[
= f(k - 1) + 2 \quad \text{(VCSS)}
\]
\[
= (2 \cdot (k - 1) + 1) + 2 \quad \text{(this is how } f \text{ is defined)}
\]
\[
= (2 \cdot (k - 1) + 2) + 1 \quad \text{(arithmetic)}
\]
\[
= (2 \cdot k) + 1 \quad \text{(algebra)}
\]
\[
= f(k) \quad \text{(this is how } f \text{ is defined)}
\]
Try Some

- Pick your favorite table from the first page of the handout.
 - Don’t pick 1a.

- Find a closed form and a recursive model that agrees with your table.

- Are your two models equal on $\mathbb{Z}^\geq 0$?
 - If not, find a place where they disagree.
 - If so, prove it.
Experiment with this puppy:

\[g(n) = \begin{cases}
2 & \text{if } n = 0 \\
2 & \text{if } n = 1 \\
2g(n - 1) + 3g(n - 2) & \text{if } n > 1
\end{cases} \]
A mixed methods

How about this one?

\[h(n) = \begin{cases}
2 & n = 0 \\
3h(n - 1) - 2 & n > 1
\end{cases} \]
You want to buy a car that costs $25000, and you can put $1000 down. The annual interest rate is 5%. What monthly payment would let you own the car after 48 months?

Hint: What you owe at the end of a month is what you owed at the start of the month, multiplied by $1 + \frac{0.05}{12}$, minus the monthly payment.

- Write a function $b(n, m)$ that gives the balance on the loan at the end of n months, with a monthly payment of m.
- Then find the m that makes $b(48, m) = 0$.
- Is there a closed form for b?
THANKS

Al Cuoco

e-mail: acuoco@edc.org

web: http://cme-project.edc.org/