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THE CME PROJECT

An NSF-funded coherent 4-year curriculum
Published by Pearson
Follows the traditional American course structure
Uses the TI-Nspire in all 4 years
Makes essential use of a CAS in the last two years
Organized around mathematical habits of mind
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THE Habits of Mind APPROACH

The real utility of mathematics for most students
comes from a style of work, indigenous to mathematics
Examples:

Is there a line that cuts the area of in half?

Is the average of two averages the average of the lot?
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ALGEBRAIC HABITS OF MIND

Reasoning about calculations:

(a+ b)2 − (a− b)2 = 4ab

Seeking structural similarity:
“Arithmetic with complex numbers is like arithmetic with
polynomials, with an extra simplification step.”
Reasoning about operations
“If the rules of arithmetic are to hold, 52

3 must be a number
whose cube is 52.”
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OUR USES OF CAS

CAS environments. . .
provide students a platform for experimenting with
algebraic expressions and other mathematical objects in
the same way that calculators can be used to experiment
with numbers.
make tractable and to enhance many beautiful classical
topics, historically considered too technical for high school
students, by reducing computational overhead.
allow students to build computational models of algebraic
objects that have no faithful physical counterparts,
highlighting similarities in algebraic structure.
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The number of factors over Z of xn − 1 as a function of n.

n number of factors of xn − 1
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EXPERIMENTING: A WEIRD FUNCTION

The number of factors over Z of xn − 1 as a function of n.

n number of factors of xn − 1
1 1
2 2
3 2
4 2
5 2
6 4
7 2
8 4
9 3

Conjectures? . . .
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EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:
There are always at least two factors:

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1)

If n is odd, there are exactly two factors (but look at n = 9)
OK . . . if n is prime, there are exactly two factors
If n = p2, there are three factors (ex: x9 − 1)
If n = pq, there are four factors (ex: x15 − 1) Scratchpad

...
A general conjecture gradually emerges
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1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
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REDUCING OVERHEAD:
THE POLYNOMIAL FACTOR GAME

The CME version:

x − 1 x2 − 1 x3 − 1 x4 − 1 x5 − 1
x6 − 1 x7 − 1 x8 − 1 x9 − 1 x10 − 1
x11 − 1 x12 − 1 x13 − 1 x14 − 1 x15 − 1
x16 − 1 x17 − 1 x18 − 1 x19 − 1 x20 − 1
x21 − 1 x22 − 1 x23 − 1 x24 − 1 x25 − 1
x26 − 1 x27 − 1 x28 − 1 x29 − 1 x30 − 1

Scratchpad Conjectures?
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REDUCING OVERHEAD:
THE POLYNOMIAL FACTOR GAME

“It’s the same as the middle school factor game.”
if m is a factor of n, xm − 1 is a factor of xn − 1 Scratchpad

x12 − 1 =
(

x3
)4

− 1

= (♣)4 − 1

= (♣− 1)
(

♣3 + ♣2 + ♣ + 1
)

=
(

x3 − 1
)(

(x3)3 + (x3)2 + (x3) + 1
)

=
(

x3 − 1
)(

x9 + x6 + x3 + 1
)
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Some Background Our uses of CAS Examples: A case study of xn − 1 Summary

REDUCING OVERHEAD:
THE POLYNOMIAL FACTOR GAME

If xm − 1 is a factor of xn − 1, m is a factor of n

This is much harder, and it requires some facility with
De Moivre’s theorem and with roots of unity: complex
numbers that are the roots of the equation

xn − 1 = 0
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De Moivre’s Theorem implies
The roots of xn − 1 = 0 are

{

cos 2kπ

n + i sin 2kπ

n | 0 ≤ k < n
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MODELING: ROOTS OF UNITY

De Moivre’s Theorem implies
The roots of xn − 1 = 0 are

{

cos 2kπ

n + i sin 2kπ

n | 0 ≤ k < n
}

If ζ = cos 2π
n + i sin 2π

n , these roots are

1, ζ, ζ2, ζ3, . . . , ζn−1

These roots lie on the vertices of a regular n-gon of
radius 1 in the complex plane

Examples
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Here are the 7th roots of unity.

ζ

2ζ

3ζ

4ζ

5ζ
6ζ

1

The six non-real roots
come in conjugate pairs.
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MODELING: ROOTS OF UNITY

Here are the 7th roots of unity.

ζ

2ζ

3ζ

4ζ

5ζ
6ζ

1

The six non-real roots
come in conjugate pairs.
So (ζ + ζ6), (ζ2 + ζ5), and
(ζ3 + ζ4) are real numbers.
What cubic equation over R

has these three numbers
as roots?
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MODELING: ROOTS OF UNITY

ζ

2ζ

3ζ

4ζ

5ζ
6ζ

1

Let

α = ζ + ζ6

β = ζ2 + ζ5

γ = ζ3 + ζ4

To find an equation satisfied by α, β, and γ, we need to find
α + β + γ

αβ + αγ + βγ

αβγ

One at a time. . .
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MODELING: ROOTS OF UNITY

The Sum:

Since α = ζ + ζ6, β = ζ2 + ζ5, and γ = ζ3 + ζ4, we have

α + β + γ = ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ

But

x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1)

So,
ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ = −1
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MODELING: ROOTS OF UNITY

The Product:

αβγ =
(

ζ + ζ6
) (

ζ2 + ζ5
) (

ζ3 + ζ4
)

We can get the form of the expansion by expanding
(

x + x6
)(

x2 + x5
)(

x3 + x4
)

Time for a CAS
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MODELING: ROOTS OF UNITY

So,
(

x + x6
)(

x2 + x5
)(

x3 + x4
)

=

x15 + x14 + x12 + x11 + x10 + x9 + x7 + x6

But if we replace x by ζ, we can replace x7 by 1. . .
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So,
(

x + x6
)(
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x3 + x4
)

=

x15 + x14 + x12 + x11 + x10 + x9 + x7 + x6

But if we replace x by ζ, we can replace x7 by 1. . .
So, if the above expression is written as

(x7 − 1)q(x) + r(x)

then replacing x by ζ will produce r(ζ)
Time for a CAS



Some Background Our uses of CAS Examples: A case study of xn − 1 Summary

MODELING: ROOTS OF UNITY

So,
(

x + x6
)(

x2 + x5
)(

x3 + x4
)

=

x15 + x14 + x12 + x11 + x10 + x9 + x7 + x6

But if we replace x by ζ, we can replace x7 by 1. . .
So, if the above expression is written as

(x7 − 1)q(x) + r(x)

then replacing x by ζ will produce r(ζ)
Time for a CAS

So αβγ = 1
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MODELING: ROOTS OF UNITY

What about the “beast”? Well, αβ + αγ + βγ =

(

ζ + ζ6
) (

ζ2 + ζ5
)

+
(

ζ + ζ6
) (

ζ3 + ζ4
)

+
(

ζ2 + ζ5
) (

ζ3 + ζ4
)

Time for a CAS
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MODELING: ROOTS OF UNITY

What about the “beast”? Well, αβ + αγ + βγ =

(

ζ + ζ6
) (

ζ2 + ζ5
)

+
(

ζ + ζ6
) (

ζ3 + ζ4
)

+
(

ζ2 + ζ5
) (

ζ3 + ζ4
)

Time for a CAS

So αβ + αγ + βγ = −2 and our cubic is

x3 + x2 − 2x − 1 = 0
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model Q(ζ) by “remainder arithmetic” in Q(x), using x7 − 1
as a divisor.
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MODELING: ROOTS OF UNITY

In this informal way, students preview the idea that one can
model Q(ζ) by “remainder arithmetic” in Q(x), using x7 − 1
as a divisor.
In fact, one can use any polynomial that has ζ as a
zero—the smallest degree one is

x6 + x5 + x4 + x3 + x2 + x + 1

This previews Kronecker’s construction of splitting fields for
algebraic equations.
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USING A CAS IN HIGH SCHOOL: OTHER EXAMPLES

The CME Project uses a CAS to

1 Experiment with algebra: Chebyshev polynomials

2 Reduce computational overhead: Lagrange interpolation
and Newton’s Difference Formula

3 Use polynomials as modeling tools: Generating functions
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FOR MORE INFORMATION

For the program:
www.pearsonschool.org/cme

Al Cuoco (acuoco@edc.org)

For summer workshops
www.edc.org/cmeproject

Melody Hachey (mhachey@edc.org)

Sarah Sword (ssword@edc.org)
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AVAILABILITY

Algebra 1, Geometry, and Algebra 2
Now

Precalculus
This Summer

Workshops this summer: August 4–8.
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