Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

ALGEBRA IN THE AGE OF CAS: IMPLICATIONS FOR THE HIGH SCHOOL CURRICULUM

EXAMPLES FROM The CME Project

Al Cuoco

Center for Mathematics Education EDC

CSMC, 2008

Some	Background
000	

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

OUTLINE

Some Background

- What is The CME Project?
- The Habits of Mind Approach
- Some Algebraic Habits of Mind

OUR USES OF CAS

Three Organizing Principles

3 EXAMPLES: A CASE STUDY OF $x^n - 1$

- Experimenting: Finding factors of xⁿ 1
- Reducing overhead: The Polynomial Factor Game
- Modeling: Roots of Unity

Some	Background
000	

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

THE CME PROJECT

- An NSF-funded coherent 4-year curriculum
- Published by Pearson
- Follows the traditional American course structure
- Uses the TI-Nspire in all 4 years
- Makes essential use of a CAS in the last two years
- Organized around mathematical habits of mind

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

THE Habits of Mind APPROACH

 The real utility of mathematics for most students comes from a style of work, indigenous to mathematics

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

THE Habits of Mind APPROACH

- The real utility of mathematics for most students comes from a *style of work*, indigenous to mathematics
- Examples:

Examples: A case study of $x^n - 1$

Summary

THE Habits of Mind APPROACH

- The real utility of mathematics for most students comes from a *style of work*, indigenous to mathematics
- Examples:

Is the average of two averages the average of the lot?

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

ALGEBRAIC HABITS OF MIND

Reasoning about calculations:

$$(a+b)^2 - (a-b)^2 = 4ab$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

ALGEBRAIC HABITS OF MIND

Reasoning about calculations:

$$(a+b)^2 - (a-b)^2 = 4ab$$

• Seeking structural similarity:

"Arithmetic with complex numbers is like arithmetic with polynomials, with an extra simplification step."

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

ALGEBRAIC HABITS OF MIND

Reasoning about calculations:

$$(a+b)^2 - (a-b)^2 = 4ab$$

• Seeking structural similarity:

"Arithmetic with complex numbers is like arithmetic with polynomials, with an extra simplification step."

Reasoning about operations

"If the rules of arithmetic are to hold, $5^{\frac{2}{3}}$ must be a number whose cube is 5^2 ."

(日) (圖) (E) (E)

Some	Background
000	

OUR USES OF CAS

CAS environments...

 provide students a platform for experimenting with algebraic expressions and other mathematical objects in the same way that calculators can be used to experiment with numbers.

OUR USES OF CAS

CAS environments...

- provide students a platform for experimenting with algebraic expressions and other mathematical objects in the same way that calculators can be used to experiment with numbers.
- make tractable and to enhance many beautiful classical topics, historically considered too technical for high school students, by reducing computational overhead.

OUR USES OF CAS

CAS environments...

- provide students a platform for experimenting with algebraic expressions and other mathematical objects in the same way that calculators can be used to experiment with numbers.
- make tractable and to enhance many beautiful classical topics, historically considered too technical for high school students, by reducing computational overhead.
- allow students to build computational models of algebraic objects that have no faithful physical counterparts, highlighting similarities in algebraic structure.

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

The number of factors over \mathbb{Z} of $x^n - 1$ as a function of *n*.

n	number of factors of $x^n - 1$
1	
2	
3	
4	
5	
6	
7	
8	
9	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

The number of factors over \mathbb{Z} of $x^n - 1$ as a function of *n*.

n	number of factors of $x^n - 1$
1	1
2	2
3	2
4	
5	
6	
7	
8	
9	

(日) (圖) (E) (E)

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

The number of factors over \mathbb{Z} of $x^n - 1$ as a function of *n*.

n	number of factors of $x^n - 1$
1	1
2	2
3	2
4	3
5	?
6	
7	
8	
9	

э

<ロ> <同> <同> <同> <同> <同>

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

The number of factors over \mathbb{Z} of $x^n - 1$ as a function of *n*.

n	number of factors of $x^n - 1$
1	1
2	2
3	2
4	3
5	2
6	4
7	?
8	?
9	?

э

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

The number of factors over \mathbb{Z} of $x^n - 1$ as a function of *n*.

n	number of factors of $x^n - 1$
1	1
2	2
3	2
4	2
5	2
6	4
7	2
8	4
9	3

Conjectures?

э

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

• There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

• If *n* is odd, there are exactly two factors (but look at n = 9)

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

• There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

If *n* is odd, there are exactly two factors (but look at *n* = 9)
OK ... if *n* is prime, there are exactly two factors

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

• There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

If n is odd, there are exactly two factors (but look at n = 9)
OK ... if n is prime, there are exactly two factors
If n = p², there are three factors (ex: x⁹ - 1)

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

• There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

- If n is odd, there are exactly two factors (but look at n = 9)
 OK ... if n is prime, there are exactly two factors
- If $n = p^2$, there are three factors (ex: $x^9 1$)
- If n = pq, there are four factors (ex: $x^{15} 1$) \checkmark Scratchpad

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

EXPERIMENTING: A WEIRD FUNCTION

Things that have come up in class:

• There are always at least two factors:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1)$$

- If *n* is odd, there are exactly two factors (but look at n = 9)
- OK ... if *n* is prime, there are exactly two factors
- If $n = p^2$, there are three factors (ex: $x^9 1$)
- If n = pq, there are four factors (ex: $x^{15} 1$) Scratchpad
- A general conjecture gradually emerges

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

The CMP version:

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

The CME version:

<i>x</i> – 1	$x^{2}-1$	<i>x</i> ³ – 1	<i>x</i> ⁴ – 1	<i>x</i> ⁵ – 1
<i>x</i> ⁶ – 1	$x^{7}-1$	<i>x</i> ⁸ – 1	<i>x</i> ⁹ – 1	<i>x</i> ¹⁰ – 1
<i>x</i> ¹¹ – 1	<i>x</i> ¹² – 1	<i>x</i> ¹³ – 1	<i>x</i> ¹⁴ – 1	<i>x</i> ¹⁵ – 1
<i>x</i> ¹⁶ – 1	$x^{17} - 1$	<i>x</i> ¹⁸ – 1	<i>x</i> ¹⁹ – 1	<i>x</i> ²⁰ – 1
$x^{21} - 1$	<i>x</i> ²² – 1	<i>x</i> ²³ – 1	<i>x</i> ²⁴ – 1	<i>x</i> ²⁵ – 1
<i>x</i> ²⁶ – 1	$x^{27} - 1$	<i>x</i> ²⁸ – 1	<i>x</i> ²⁹ – 1	<i>x</i> ³⁰ – 1

Conjectures?

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

• "It's the same as the middle school factor game."

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

- "It's the same as the middle school factor game."
- if *m* is a factor of *n*, $x^m 1$ is a factor of $x^n 1$ Scratchpad

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

- "It's the same as the middle school factor game."
- if *m* is a factor of *n*, $x^m 1$ is a factor of $x^n 1$ Scratchpad

$$x^{12} - 1 = (x^3)^4 - 1$$

= $(\clubsuit)^4 - 1$
= $(\clubsuit - 1) (\clubsuit^3 + \clubsuit^2 + \clubsuit + 1)$
= $(x^3 - 1) ((x^3)^3 + (x^3)^2 + (x^3) + 1)$
= $(x^3 - 1) (x^9 + x^6 + x^3 + 1)$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

• If $x^m - 1$ is a factor of $x^n - 1$, *m* is a factor of *n*

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

REDUCING OVERHEAD: THE POLYNOMIAL FACTOR GAME

• If $x^m - 1$ is a factor of $x^n - 1$, *m* is a factor of *n*

This is much harder, and it requires some facility with De Moivre's theorem and with *roots of unity*: complex numbers that are the roots of the equation

$$x^{n} - 1 = 0$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

De Moivre's Theorem implies

• The roots of $x^n - 1 = 0$ are

$$\left\{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \quad | \quad 0 \le k < n\right\}$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

De Moivre's Theorem implies

• The roots of $x^n - 1 = 0$ are

$$\left\{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \quad | \quad 0 \le k < n\right\}$$

• If
$$\zeta = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
, these roots are
1, ζ , ζ^2 , ζ^3 , ..., ζ^{n-1}

Our uses of CAS

Examples: A case study of $x^n - 1$

<ロ> <問> <問> < 同> < 同>

Summary

MODELING: ROOTS OF UNITY

De Moivre's Theorem implies

• The roots of $x^n - 1 = 0$ are

$$\left\{\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \quad | \quad 0 \le k < n\right\}$$

• If
$$\zeta = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
, these roots are
1, ζ , ζ^2 , ζ^3 , ..., ζ^{n-1}

 These roots lie on the vertices of a regular *n*-gon of radius 1 in the complex plane

> Examples

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

Here are the 7th roots of unity.

• The six non-real roots come in conjugate pairs.

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

Here are the 7th roots of unity.

- The six non-real roots come in conjugate pairs.
- So $(\zeta + \zeta^6)$, $(\zeta^2 + \zeta^5)$, and $(\zeta^3 + \zeta^4)$ are real numbers.

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

Here are the 7th roots of unity.

- The six non-real roots come in conjugate pairs.
- So $(\zeta + \zeta^6)$, $(\zeta^2 + \zeta^5)$, and $(\zeta^3 + \zeta^4)$ are real numbers.
- What cubic equation over ℝ has these three numbers as roots?

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

To find an equation satisfied by α , β , and γ , we need to find

- $\alpha + \beta + \gamma$
- $\alpha\beta + \alpha\gamma + \beta\gamma$
- $\alpha\beta\gamma$

One at a time...

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

The Sum:

Since
$$\alpha = \zeta + \zeta^6$$
, $\beta = \zeta^2 + \zeta^5$, and $\gamma = \zeta^3 + \zeta^4$, we have
 $\alpha + \beta + \gamma = \zeta^6 + \zeta^5 + \zeta^4 + \zeta^3 + \zeta^2 + \zeta$

But

$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

So,

$$\zeta^6 + \zeta^5 + \zeta^4 + \zeta^3 + \zeta^2 + \zeta = -1$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

The Product:

$$\alpha\beta\gamma = \left(\zeta+\zeta^{6}\right)\left(\zeta^{2}+\zeta^{5}\right)\left(\zeta^{3}+\zeta^{4}\right)$$

We can get the form of the expansion by expanding

$$\left(x+x^{6}\right)\left(x^{2}+x^{5}\right)\left(x^{3}+x^{4}\right)$$

Time for a CAS

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

So,

$$(x + x^6) (x^2 + x^5) (x^3 + x^4) =$$
$$x^{15} + x^{14} + x^{12} + x^{11} + x^{10} + x^9 + x^7 + x^6$$

But if we replace *x* by ζ , we can replace x^7 by 1...

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

So,

$$(x + x^6) (x^2 + x^5) (x^3 + x^4) =$$
$$x^{15} + x^{14} + x^{12} + x^{11} + x^{10} + x^9 + x^7 + x^6$$

But if we replace *x* by ζ , we can replace x^7 by 1... So, if the above expression is written as

$$(x^7-1)q(x)+r(x)$$

then replacing x by ζ will produce $r(\zeta)$

Time for a CAS

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

So,

$$(x + x^6) (x^2 + x^5) (x^3 + x^4) =$$
$$x^{15} + x^{14} + x^{12} + x^{11} + x^{10} + x^9 + x^7 + x^6$$

But if we replace *x* by ζ , we can replace x^7 by 1... So, if the above expression is written as

$$(x^7-1)q(x)+r(x)$$

then replacing x by ζ will produce $r(\zeta)$

Time for a CAS

So $\alpha\beta\gamma = 1$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

What about the "beast"? Well, $\alpha\beta + \alpha\gamma + \beta\gamma =$

$$\begin{pmatrix} \zeta + \zeta^{6} \end{pmatrix} \left(\zeta^{2} + \zeta^{5} \right) + \\ \left(\zeta + \zeta^{6} \right) \left(\zeta^{3} + \zeta^{4} \right) + \\ \left(\zeta^{2} + \zeta^{5} \right) \left(\zeta^{3} + \zeta^{4} \right)$$

Time for a CAS

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

What about the "beast"? Well, $\alpha\beta + \alpha\gamma + \beta\gamma =$

$$\begin{pmatrix} \zeta + \zeta^6 \end{pmatrix} \left(\zeta^2 + \zeta^5 \right) + \\ \left(\zeta + \zeta^6 \right) \left(\zeta^3 + \zeta^4 \right) + \\ \left(\zeta^2 + \zeta^5 \right) \left(\zeta^3 + \zeta^4 \right)$$

• Time for a CAS

So $\alpha\beta + \alpha\gamma + \beta\gamma = -2$ and our cubic is

$$x^3 + x^2 - 2x - 1 = 0$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

 In this informal way, students preview the idea that one can model Q(ζ) by "remainder arithmetic" in Q(x), using x⁷ − 1 as a divisor.

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

- In this informal way, students preview the idea that one can model Q(ζ) by "remainder arithmetic" in Q(x), using x⁷ − 1 as a divisor.
- In fact, one can use any polynomial that has ζ as a zero—the smallest degree one is

$$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1$$

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

MODELING: ROOTS OF UNITY

- In this informal way, students preview the idea that one can model Q(ζ) by "remainder arithmetic" in Q(x), using x⁷ − 1 as a divisor.
- In fact, one can use any polynomial that has ζ as a zero—the smallest degree one is

$$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

 This previews Kronecker's construction of splitting fields for algebraic equations.

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

USING A CAS IN HIGH SCHOOL: OTHER EXAMPLES

The CME Project uses a CAS to

Experiment with algebra: Chebyshev polynomials

USING A CAS IN HIGH SCHOOL: OTHER EXAMPLES

The CME Project uses a CAS to

- Experiment with algebra: Chebyshev polynomials
- Reduce computational overhead: Lagrange interpolation and Newton's Difference Formula

USING A CAS IN HIGH SCHOOL: OTHER EXAMPLES

The CME Project uses a CAS to

- Experiment with algebra: Chebyshev polynomials
- Reduce computational overhead: Lagrange interpolation and Newton's Difference Formula
- Use polynomials as modeling tools: Generating functions

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

FOR MORE INFORMATION

• For the program:

- www.pearsonschool.org/cme
- Al Cuoco (acuoco@edc.org)
- For summer workshops
 - www.edc.org/cmeproject
 - Melody Hachey (mhachey@edc.org)
 - Sarah Sword (ssword@edc.org)

Our uses of CAS

Examples: A case study of $x^n - 1$

Summary

AVAILABILITY

- Algebra 1, Geometry, and Algebra 2
 Now
- Precalculus
 - This Summer

Workshops this summer: August 4-8.

